

SDN

"Roadmap to Operating SDN-based Networks" Workshop July 15, 2015

Kireeti Kompella CTO, JDI

Agenda

- Three aspects of SDN
- SDN @ Juniper
- OpenContrail
- NorthStar

Three aspects of SDN

- -Programmability
- -Automation
- –Abstraction (SDN as a Compiler)

Offered by Juniper

Programmability

- Your software vendor gives you a nice OS and some nice apps
 - But these don't do all you need
- You want to improve performance or scale
 - Or you want to add a new feature
 - Or you just want to play
- Usually, the vendor gives you an API
 - The rest is up to you ©

Offered by Juniper

Automation

- You know what you want to do
 - You do it manually for a device or two
- Now, you want to do it for 100s or 10s of 1000s of devices
 - You need to parametrize what you did at a small scale
 - You need mechanisms whereby devices can ask for help, or send telemetry to your Automation Agent
 - You need rules ("policy") to handle exceptions or to adapt to situations
- The vendor gives you a framework, tools, mechanisms to enable and/ or simplify your task
 - Again, the rest is up to you ©

Offered by Juniper

Abstraction

- You have a nice language: high-level, abstract, device-independent
 - Programming languages are primarily imperative (C, Java, Python)
 - But many are declarative (LISP, SNOBOL, Haskell, ...)
- You define what you want to have happen
 - Imperative: state how you want things done
 - Declarative: state what you want done
- The language compiler translates this to a lower-level language that your devices can understand and carry out

SDN as a Compiler Say what you want, not how to do it

SDN @ Juniper

- -OpenFlow
- -OpenContrail
- -NorthStar

SDN @ Juniper

OpenFlow

- Juniper supports OpenFlow 1.0 and 1.3 on its MX routers, EX and QFX switches
- More info at:

http://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html

- OpenFlow != SDN
- A good example of SDN that this audience will be familiar with is OSCARS.

Network Mechanisms Underlying OSCARS

Juniper's SDN Strategy

Virtualization /
Services

Data centers

Contrail

Wide Area Networks

NorthStar

OpenContrail: Network Virtualization for multi-tenant DCs

A Case Study in Abstraction

Network Virtualization in the Data Center

Conceptualization (Abstraction)

OpenContrail Network Virtualization

Underlying these abstractions: BGP MPLS VPNs signaled over xmpp running over MPLS/GRE, MPLS/UDP or VXLAN

Copyright © 2014 Juniper Networks, Inc.

Group Based Policies

Service Chaining (with VNFs and PNFs)

All of the above (and more) has been implemented and deployed

Juniper NorthStar TE Controller

Centralizing Some Control Plane Functions

PCE ARCHITECTURE

A Standards-based Approach for Carrier SDN

What is it?

A path Computation Element (PCE) is a system component, application, or network node that is capable of determining and finding a suitable route for conveying data between a source and a destination

What are the components?

- Path Computation Element (PCE): Computes the path
- Path computation Client (PCC): Receives the path and applies it in the network. Paths are still signaled with RSVP-TE.
- PCE protocol (PCEP): Protocol for PCE/PCC communication

PCE: EVOLUTIONARY APPROACH

Active Stateful PCE Extensions

REAL-TIME AWARENESS OF LSP & NETWORK STATE

- PCE dynamically learns the network topology
- PCCs report the LSP state to the PCE

LSP ATTRIBUTE UPDATES

Via the PCEP, the PCE can update LSP B/W & path attributes, if the LSP is *controlled*

CREATE & TEAR-DOWN LSPS

■ The PCE can *create* LSPs on the PCC, ephemerally

HARDER PROBLEMS OFFLOADED FROM NETWORK ELEMENT

- P2MP LSP path computation & P2MP tree diversity
- Disjoint SRC/DST LSP path diversity
- Multi-layer & multiple constraints

^{*} No persistent configuration is present on the PCC

WHAT DOES THAT REALLY MEAN?

Why is it an active Stateful PCE:

- Northstar-PCE is synchronized, in real-time, with the network via standard IP networking protocols; OSPFv2, ISIS, BGP-LS, PCEP
- Northstar-PCE has visibility of the available RSVP B/W
- Northstar-PCE has visibility into the LSP state; RRO, LSP attributes
- Northstar-PCE can have 'control' of LSPs & create 'state' within the MPLS network

Northstar is an extension of the MPLS (routing) control-plane:

- A PCE is only concerned with the transport LSPs of an IP/MPLS network (MPLS = RSVP-TE)
- While Northstar-PCE can *create* an LSP via PCEP, that creation is
 NOT configuration in the management-plane of a PCC

THE CLIENT (PCC) IS IMPORTANT - JUNOS PCEP SUPPORT

New JUNOS daemon, pccd

PCCD enables a PCE application to set/modify/get parameters for a traditionally configured TE LSPs and for ephemerally created LSPs

- PCCD is the PCC instantiation of PCEP
- As PCEP evolves, PCCD MUST be enhanced/upgraded

JUNOS/PCCD(PCC) Evolution 12.3R3 14.2R4 15.1F5 16.1R1 PCCD PCE Path Protect, Created SPRING P2MP LSPs

ACTIVE CONTROL VS. OFFLINE PLANNING

NorthStar-PCE vs. Northstar-Simulation

REAL-TIME NETWORK FUNCTIONS

- Dynamic Topology updates via BGP-LS / IGP-TE
- Dynamic LSP state updates via PCEP
- Real-time modification of LSP attributes via PCEP (ERO, B/W, pre-emption, ...)

MPLS LSP PLANNING & DESIGN

- Topology acquisition via REST API
- LSP provisioning via REST API
- Exhaustive failure analysis & capacity planning for MPLS LSPs
- MPLS LSP design (P2MP, FRR, JUNOS config'let, ...)

A CUSTOMER EXAMPLE – PCE RESOURCE OPTIMIZATION

Centralized vs. distributed path computation

Distributed CSPF Assumptions

- TE-LSP operational routes are used for distributed CSPF
- RSVP-TE Max Reservable BW set BW set to 92%
- Modeling was performed with the exact operation LSP paths

Centralized Calculation Assumptions

- Convert all TE-LSPS to EROs via PCE design action
- Objective function is Min Max link utilizations
- Only Primary EROS & Online Bypass LSPS
- Modeling was performed with 100% of TE LSPS being computed by PCE

Copyright © 2014 Juniper Networks, Inc.

ADDITIONAL INFORMATION

opencontrail.org

Open source + documentation + IETF drafts + blogs + Q&A and more

Northstar:

http://www.juniper.net/us/en/products-services/sdn/northstar-network-controller/

PCEP:

- http://tools.ietf.org/html/draft-ietf-pce-stateful-pce-07
- https://tools.ietf.org/html/draft-crabbe-pce-pce-initiated-lsp-03
- http://tools.ietf.org/html/draft-ananthakrishnan-pce-stateful-path-protection-00
- http://tools.ietf.org/html/draft-minei-pce-association-group-00
- RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)
- RFC 7190: Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol

BGP-LS:

http://www.ietf.org/id/draft-ietf-idr-ls-distribution-05.txt

Postscript: OpenConfig

- OpenConfig is a provider-driven effort to standardize configuration
- Participants are Web2.0 companies, Tier 1 and Tier 2 SPs
- Initial target is BGP + routing policy, IGP and MPLS config
- Next up are services
- All these are expressed in the YANG data modeling language
- Juniper has alpha code implementing OpenConfig models
 - An official release is slated for 2016

Feel free to consider this as SDN:)

Thank You!